Package: VsusP 1.0.0
VsusP: Variable Selection using Shrinkage Priors
Bayesian variable selection using shrinkage priors to identify significant variables in high-dimensional datasets. The package includes methods for determining the number of significant variables through innovative clustering techniques of posterior distributions, specifically utilizing the 2-Means and Sequential 2-Means (S2M) approaches. The package aims to simplify the variable selection process with minimal tuning required in statistical analysis.
Authors:
VsusP_1.0.0.tar.gz
VsusP_1.0.0.zip(r-4.5)VsusP_1.0.0.zip(r-4.4)VsusP_1.0.0.zip(r-4.3)
VsusP_1.0.0.tgz(r-4.4-any)VsusP_1.0.0.tgz(r-4.3-any)
VsusP_1.0.0.tar.gz(r-4.5-noble)VsusP_1.0.0.tar.gz(r-4.4-noble)
VsusP_1.0.0.tgz(r-4.4-emscripten)VsusP_1.0.0.tgz(r-4.3-emscripten)
VsusP.pdf |VsusP.html✨
VsusP/json (API)
# Install 'VsusP' in R: |
install.packages('VsusP', repos = c('https://nilson01.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/nilson01/vsusp-variable-selection-using-shrinkage-priors/issues
Last updated 5 months agofrom:cf6f1c5246. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | NOTE | Oct 26 2024 |
R-4.5-linux | NOTE | Oct 26 2024 |
R-4.4-win | NOTE | Oct 26 2024 |
R-4.4-mac | NOTE | Oct 26 2024 |
R-4.3-win | NOTE | Oct 26 2024 |
R-4.3-mac | NOTE | Oct 26 2024 |
Exports:OptimalHbiS2MVarSelectionS2MVarSelectionV1Sequential2MeansSequential2MeansBeta
Dependencies:bayesregcodetoolsdoParallelforeachiteratorspgdrawRcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Variable selection using shrinkage priors :: numNoiseCoeff | numNoiseCoeff |
Variable selection using shrinkage priors :: OptimalHbi | OptimalHbi |
Variable selection using shrinkage priors :: S2MVarSelection | S2MVarSelection |
Variable selection using shrinkage priors :: S2MVarSelectionV1 | S2MVarSelectionV1 |
Variable selection using shrinkage priors :: Sequential2Means | Sequential2Means |
Variable selection using shrinkage prior :: Sequential2MeansBeta | Sequential2MeansBeta |